探索规律的教学反思

更新时间:2024-07-19 13:23:20
探索规律的教学反思

身为一位优秀的教师,我们要在教学中快速成长,在写教学反思的时候可以反思自己的教学失误,如何把教学反思做到重点突出呢?下面是小编为大家收集的探索规律的教学反思,希望对大家有所帮助。

探索规律的教学反思1

本课时主要引导学生借助计算器探索积的一些变化规律和商不变的规律,以及运用这些规律进行简便计算和解决一些简单的实际问题。在学习这部分内容之前,学生已经学习了整数乘、除法和使用计算器进行计算,有了一定的学习基础。因此,重点应放在对规律的探索方面,教学完本单元内容,我有以下几点体会:

1、教学时要留足够的时间,让学生发现探索规律,并且有独立思考的时间。上课时有些思维敏捷的孩子会一下子发现规律,并脱口而出,于是,我就让这个学生来说说是怎么想的,给还处于懵懂的孩子一些提示,小结规律后,再通过学生自己写算式来验证发现的"规律,这样就加深学生对规律的认识。当然,对那些“聪明”孩子的上课习惯还是要加强培养。

2、将课堂延伸到课外,在上课前,先让学生在家里算一算例题,找找规律,这样可以让学生带着问题上课,提高课堂效率,也给学生留出了充足的时间发现规律。

3、克服思维惰性,加强估算能力的培养。发现和总结出规律后,就可以进行简便计算,一些较难的两位数乘两位数可以很快得出答案,但有些孩子为了避免犯错,会回避用规律来进行计算,而是采用比较繁琐的列竖式。出现这种情况可能有两种原因,一种是课堂上对规律的感知还不够,要适当的给这部分孩子增加练习量,进一步感受规律,提高规律掌握的熟练度。另一种是,怕粗心犯错,对于这部分孩子则可让他们算完后,进行估算,这样有利于他们养成自觉检查的好习惯,通过估算也能发展学生的思维能力和数感。

4、《探索图形的规律》教学反思

《探索图形的规律》一课的教学目标是引导学生发现一些简单图形摆放的规律,通过探究图形的规律,培养学生发现规律,总结归纳规律的能力。在这节课的教学中,我采用的是引导发现的教学方法,抛出问题后,让学生自己观察、自己思考、自己得出答案,如果有问题教师予以指导。本节课的教学达到了预期的效果,但是仍有些不足。现总结本节课教学的优缺点如下:

一、优点:

1、本节课的设计合理,思路清晰,问题设置由浅入深。由摆n个三角形、正方形、五边形需要多少根小木棒总结出n个n边形需要小木棒的根数,这是这节课的亮点。

2、在这节课的教学中,我始终遵循以学生为主体,教师的作用是引导,不是一味的"讲。

3、在这节课的教学中我始终注意培养学生的观察能力、审题能力和语言表达能力。

4、对于学生的观点,让学生自行质疑提问,学生面向学生,更调动了学生的学习主动性。

二、缺点:

1、教师的引导语言还不够精炼,以至于个别的问题没有启发出学生的思维。

2、课堂语言不够严肃,出现了几句和课堂无关的话。

3、有两处没有耐心的等学生思考出答案就进行了提示,没有锻炼好学生的思考力。

4、小组讨论时间有些不足,并不是所有的学生都探究出了答案。

5、课堂预设不够丰富,在学生提出独特的想法的时候,教师的应变有点慢。

6、还应该提高教师的应变能力。

课堂教学是一门缺憾的艺术,每一节课都会有些许的遗憾,但是每一节公开课对于我来说都是一次提升,虽然仍有很多的不足,但是我在众多教师观摩的情况下仍然展示出了这节课教学的优点,说明我还是进步的。我不能因为这节课的教学中出现了些许的不足而丧志信心,更不能因为拥有了这些优点而骄傲自满。以后教学工作中的每一节课都是我展现优势改正缺点的平台,既然教学是一门缺憾的艺术那我就让缺憾变的最小吧。

探索规律的教学反思2

一、有效教学

苏霍姆林斯基说过:“如果教师不想方设法使学生达到情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度。而不动情的脑力劳动就会带来疲倦,没有欢欣鼓舞的心情,学习就会成为学生沉重的负担。”在探索规律这一环节中,我设计的探索题,激发了强烈的探索兴趣和能力。学生不自觉地就进入了新规律套所的状态中,发现新的规律也成为学生的主题需要,学生由被动地接受者、参与者成为主动地创造者、主体者,而我的角色更符合顾问,适当的时机引领寻声的探索走向深入、持久、有效。

二、高效教学

适时引入计算器。在探索规律时,有的计算过程比较复杂,这时引入计算器省时又精确,使学生通过亲身体验,感受到计算器的作用和优势,同时培养了学生灵活选择计算方法和工具的意识。

整节课自始自终,把学习的主动权完全交给学生。通过让学生试算、观察、比较、讨论等充分调动学生多种感官的参与,让学生全面参与新规律的发现过程。而多种感官参加学习活动,可使学习内容在大脑建立多层次、多网络联系,利于学生理解记忆,也能凸显学生的主体地位,使教学学习变成学生主体性、能动性、独立性不断发展和提升的过程,体现了以学生发展为本的新理念。

三、魅力教学

要使学生感悟小学数学中蕴涵的丰富美,有效的方法是让学生亲身体验数学的发生、发展过程,让学生亲生经历知识的探索过程。

“数学是美的王国”。本课教学中,让学生从一组组有趣的算式中寻找出了一个个固定不变的规律,即美的存在,感悟到数学的“统一美”,接着根据已发现的规律,让学生写出符合规律的等式,感悟到数学的“神奇美”,数学规律被发现、被理解,这个过程本身也会令学会兴奋和满足,引起审美喜悦。课上学生还能体验到整个教学过程的和谐美。

总之,努力使学生在充满美的氛围中津津有味地品尝老师精心制作的美的大餐。

探索规律的教学反思3

学生已经在一年级下学期学习了一些图形和数的简单排列规律,本册教材中图形和数的排列规律显得复杂一些。这节课是学生在已有知识和经验的基础上,通过操作、观察、猜测、推理等活动去探索图形的排列规律。众所周知,数学是模式的科学,寻找和发现周围世界事物之间的关系以及事物变化的规律构成了数学学习的重要内容。同时,发现关系和规律的过程也是发展学生探索能力的过程。因此,《标准》将“探索规律”作为数学与运算独立的内容,其目的是加强这方面教学的力度,把这种“探索规律”的活动,结合其它方面内容的学习,渗透到教学的全过程中,开阔学生的思路。因此在设计时,我根据本课探究性和活动性比较强的特点,为学生设置了丰富的、现实的、具有探索性的活动,让学生在具体的活动中发现规律,培养学生的观察、操作和推理的能力。

一、创设问题情境,引出课题

“创设情境”是数学教学中常用的一种策略,有利于学生解决数学内容的高度抽象性和小学生思维的个体形象性之间的矛盾。根据本节课的教学内容创设一个具有一定开放性的问题情境,解放学生的思想,让他们敢想;解放学生的嘴,让他们敢问。在刚一上课,我便问学生:“喜欢做游戏吗?我们快去看 ……此处隐藏6863个字……中运用着。

用商不变的规律进行除法竖式的简便计算中,我先回顾了学完的两个规律,并请学生进行举例说明,唤起学生的已有知识后,我先出示了一道能整除的整百数除以整十数的问题,学生用之前学过的除法算式很快就列出了竖式,这一题的教学时,我先板书了一般的列竖式的方法,有板书了根据商不变的规律去掉被除数和除数末尾相同个数的零的方法,学生一直认为第二种方法比较简便,很快接受了这种新的方法。接下来我将除数进行了修改,变成了有余数的除法,先让学生根据刚才的简便算法列出了竖式,特意没有让学生在自己的本子上写出横式,列完竖式的时候我让学生再写横式,结果大部分的同学就直接把竖式得到的商和余数写了上去,少部分同学发现这里的问题,趁着这样的机会,我让学生认识了商不变的规律下其实余数是变化的,一个小小的设计想让学生意识到本节课的难点,商不变的规律下,余数是变化的,而余数的变化是跟原来的除法算式有很大的关系的。学生在练习的时候也留意了这样的问题,突破了难点。

练习中我发现,学生对于这一单元的难点还是没有全部突破,部分学生仍然不能准确地判断出积和商的变化规律,特别是两个因数同时变化的情况,或者是被除数和除数一个乘一个除以的时候,在以后的练习中这样的问题需要进一步的解决。

探索规律的教学反思12

“探索规律”问题蕴涵着观察、猜想、归纳的思想方法,是锻炼学生抽象思维能力的一个好素材 。鉴于上学期学生已经有了找规律的经验,我对本节课进行了深入的挖掘和整理,分了三个环节来完成。

第一环节的“智力测验”旨在让学生从简单的数字规律中发现这些数字都是通过“加、减、乘、除、乘方”运算建立联系的。同时向同学们传达了解决问题的普遍方法,即:先发现规律,然后利用规律解决具体问题。

第二环节的“杨辉三角”是数学史上很著名的体现数字规律的篇章,通过寻找杨辉三角的规律,充分调动学生的视觉去观察,大脑去思考、归纳,然后利用发现的规律续写杨辉三角。接下来我向同学们介绍了杨辉三角的悠久历史,使同学们为我们民族的数学发展感到自豪,有利于提升学生的数学兴趣。这么著名的杨辉三角究竟有什么用途呢?这时我将它与我们最近学习的多项式乘法联系起来,引导同学们观察(a+b)n[n是正整数]的展开式,按照a的指数依次降低的顺序排列之后,将各项的系数拿出来排列成表,发现恰好是杨辉三角,同时还发现各项中字母指数也是有一定规律的。学生们已经学习了多项式的乘法,感受更深,自然而然地联想到运用杨辉三角来简化多项式(a+b)n[n是正整数]的运算。

探索规律的教学反思13

一年级数学第一册安排了两次“探索规律”,我将两次的内容进行了整合,设计了探索实物、图形和数的排列规律。这节课从始至终都充满浓浓的探究味,在入学第一学期就为培养学生探究能力的发展奠定了坚实的基础。

一、在探究中体验“规律”的存在和优势

上课开始,我创设了一个让学生在短时间记数的情境。出了三组数,一组是没有规律的数。有两组是有规律的数,分别是和;学生在短短的几秒内就记住了这些数。我究其记得快的原因,学生说因为这两组数有规律,所以记得快。这个活动的设计,目的是让学生在探究中体验“规律”的存在和优势所在,进而明确这节课探究的目标是探索规律。

二、让学生经历从具体到抽象的探究过程

本节课学生经历了从具体到抽象的探究过程:从找实物的排列规律,到找图形的排列规律,再到找10以内数的排列规律。找实物的排列规律是从学生熟悉的水果朋友和动物朋友入手,让学生发现规律并且应用规律解决简单的问题。到图形排列规律时,放手让学生用4个圆片和4个三角形自己创造规律。接下来转入数的排列规律。因为学生只学习了10以内的数,所以我把探索数的规律定位在发现单数、双数的排列规律上,让学生发现单、双数的排列规律都是一个比一个多2。最后,回归到生活中的规律。这种从具体到抽象的设计,既符合学生的认知水平,又符合学生的思维特点。为学生探究能力的发展搭建了逐步提升的平台。

三、采用多种形式为学生探究学习提供空间

学习是一个过程,探究学习更应是一个充满着观察、发现、实践、推断的过程。因此,教师应为学生的探究活动提供充分的时间和空间。教学中,我注重为学生创设一个活动、探究、创造的学习氛围,采用多种形式让进行学生探究学习,使学生在摆一摆、涂一涂、猜一猜等活动中发现规律、发展思维。比如:课上让学生动手摆图形创造规律,还有用彩笔在一排没有颜色的花上,创造出一排颜色上有规律的花。学生们在一种愉快的氛围中,创造出很多规律,学生将对“规律”的理解用自己的双手表现出来。

整节课,我鼓励学生自己去发现、自己去尝试、自己去创造,力求在生动有趣的情境中,使学生探索一个又一个规律,在玩中学,享受着探究的无限乐趣。

探索规律的教学反思14

首先,用“杨师傅拉面”的实际操作活动引入新课,旨在激发学生的学习兴趣和主动学习的欲望,下课后王扬扬同学还把我的“拉面王”借去拉了好久。在

规律时一定要抓住主要的东西,既哪些量是变的,哪些量是不变的,如 中2是不变的,n是变化的, n是捏合的次数,这样更有利于学生理解与记忆。

其次,关于例题的筛选:第一类是呈指数变化的,如杨师傅拉面、细胞分裂、折纸等,即高中所讲的等比数列。在此类例题中我侧重讲了折纸问题,在讲课时,如果把层数放在前面,折痕数放在后面讲就更有利于学生找出折痕条数与对折次数的关系了,或者去掉折痕数不讲也可。改动如下:

折纸游戏: 将一张长方形的纸对折,如图所示.对折时每次的折痕与上一次的折痕保持平行。

探索规律的教学反思15

本节课是探索性很强的数学课,是让学生探索“商不变的规律”,并利用该规律使有关除法简便,这要求学生要有一定的知识基础,具备一定的探索能力,我们知道,学生的学习往往经历感知(具体)———概括(抽象)———应用(实际)的认识过程。而在这个过程中有两次飞跃,第一次飞跃是由“感知——概括”,也就是说学生的认识活动要在具体感知基础上,通过抽象概括,从而得出知识的结论。第二次飞跃是由“概括——应用”,这是把掌握的知识结论应用于实际的过程。能辅助学生做好这两个飞跃,久而久之就教会了学生“学数学的方法”做到了“授之以渔”。基于这一认识本节课我们设计了开放度很大的学习活动,设计了适宜于学生学习系列活动。

1、创设故事情境,激发学生兴趣。

创设学生感兴趣的孙悟空分桃子故事情境,激发学生学习兴趣,启发积极思维,学生在故事中发现问题,从而带着愉悦的心情去探索。

2、创设探究空间,引发探索。

学生发现问题,老师不急于告诉学生结论,而是让学生观察、思考、探究,让学生通过自主探索,小组合作,全班交流,引导学生逐步去发现,去构建,去理解“商不变的规律”,引导学生经历“发现——探索——构建——应用”的知识建构过程,从而培养学生学会学数学做数学的方法。在这一过程中,最大限度地为学生提供探索、发现、总结的空间,让学生在独立思考和同伴互助等形式下完成规律的探究过程,感受发现的快乐,培养学生爱数学的情感。

《探索规律的教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式